An introduction to secure, scalable wireless LAN deployment

Klaas Wierenga
SURFnet
klaas.wierenga@surfnet.nl

Stefan Winter
RESTENA
stefan.winter@restena.lu

Nicosia (CY), Jan 15, 2007
Contents

• Wireless network security
• IEEE 802.1X
• Conclusions
Wireless LANs are unsafe

ifconfig eth1 hw ether
00:00:de:ad:be:ef
Requirements

• Identify users uniquely at the edge of the network
 – Prevent session hijacking
• Scalable
• Easy to deploy and use
• Open

• Give away for next part: allow for guest use
Possible solutions

Standard solutions provided by AP’s:

• Open access: scalable, not secure
• MAC-address: not scalable, not secure
• WEP: not scalable, not secure

Alternative solutions:

• Web-gateway+RADIUS
• VPN-gateway
• 802.1X+RADIUS
Access to the campus WLAN

- Initial connection is either to a trusted or an untrusted network
Open network + web gateway (a.k.a. “web-redirect hotspots“)

- Open (limited) network, gateway between (W)LAN and the rest of the network intercepts all traffic (session intercept)
- Can use a RADIUS backend to verify user credentials
- Guest use easy
- Browser necessary for initial login
- Hard to maintain accountability
 - Session hijacking
Why isn't Web-Redirect good enough?

- Commercial hotspots almost exclusively use this method
- Why don't we?
 - no packet encryption on link, easily sniffable
 - user can't verify operator
 - operator doesn't care about lost/sniffed credentials as long as he gets his subscription money

- => Web-Redirect is perfect for a commercial operator
- but we should try to do better!
Open network + VPN Gateway

- Open (limited) network, client must authenticate on a VPN-concentrator to get to rest of the network
- Client software needed
- Proprietary and/or tough to setup
- Hard to scale
- VPN-concentrators are expensive
- Guest use hard (sometimes VPN in VPN)
- All traffic encrypted
- NB: VPN’s are the method of choice for protecting data on a WAN
IEEE 802.1X

- True port based access solution (Layer 2) between client and AP/switch
- Several available authentication-mechanisms through the use of EAP (Extensible Authentication Protocol)
- Standardised
- Also encrypts all data, using dynamic keys
- RADIUS back-end:
 - Scalable
 - Re-use existing trust relationships
- Easy integration with dynamic VLAN assignment (802.1Q)
- Client software necessary (OS-built in or third-party)
- Future proof (WPA, WPA2/802.11i)
- For wireless and wired
Summary

• SOHO security options of AP’s don’t work

• Web-redirect+RADIUS: scalable, not secure

• VPN-based: not scalable, secure

• 802.1X: scalable, secure
High-quality Internet for higher education and research
802.1X/EAP

- Authenticated/Unauthenticated Port
- Supplicant/Authenticator/Authentication Server
- Uses EAP (Extensible Authentication Protocol)
- Allows authentication based on user credentials

supplicant

authenticator
keeps port in closed state until supplicant authenticated

authentication credentials travel end-to-end

campus network/wider internet

authentication server verifies identity

High-quality Internet for higher education and research
EAP over LAN (EAPOL)

supplicant
sends auth payload via EAPoL (layer 2)

authenticator
converts EAPoL into RADIUS message

authentication server
evaluates RADIUS packets and EAP-Message payload

campus network/wider internet

EAPoL

authentication payload within EAP

RADIUS (with EAP-Message)
Through the protocol stack

Supplicant (laptop, desktop) → Authenticator (AccessPoint, Switch) → Auth. Server (RADIUS server)

802.1X → EAPOL → Ethernet/802.11

EAP → RADIUS → UDP → IP → Ethernet/802.11
Secure access to the campus LAN with 802.1X

- Supplicant
- Authenticator (AP or switch)
- RADIUS server (Authentication Server)
- User DB
- Internet

- Employee VLAN
- Student VLAN
- Guests VLAN

- • 802.1X
- • (VLAN assignment)

User: user@someuniversity.xy
Password: weirdpasswd
securing the authentication payload

- Common protocols within EAP:
 - EAP-TLS: both supplicant and server validate their identity with certificates
 - EAP-TTLS: server presents certificate, establishes TLS tunnel → supplicant uses username+password
 - PEAP-MSCHAPv2: similar to EAP-TTLS, but additionally encrypts username+password
- These protocols provide mutual authentication
Conclusions
Summary

• There is a difference between providing access to campus resources over the Internet and providing network access
• Access via the Internet: VPN

• Network access: 802.1X

• Next: How 802.1X can be leveraged for guest access